Visual Basic Lecture 1

The duration of this class will focus on writing Windows-based applications using
Microsoft Visual Basic. If you are interested in computer programming in other languages,
software is available at: http://msdn.microsoft.com/vstudio/express/downloads/. Here you will
be able to download software development tools from a variety of programming languages to
suit your needs. And best of all: it’s completely free! If you wanted to pay for all of these
together, it could easily cost you $1,200 for the full versions.

So what is MSVB? VB is a programming language that not only allows you to write
code for programs, but also allows you to visually design what the final program will look like.
It provides a simple way for you to see and develop you program simultaneously.

Getting Started:

When you begin the VB 2005 Express program, you will have the option to click on
several links that will allow you to see what’s new in the world of Microsoft development. Also,
in the lower left-hand box, you will notice a link that says “How do I ...” This can link you to
both Microsoft’s help page and utilize the built-in help that comes with the program.

In the upper left box, you will have options to open or create projects. Clicking on create
will bring up a screen asking what type of application you want to create. Select Windows
Application, type in the name of the project (if you have one), and press Ok. You should now
see this:

& windowsApplicationl - Microsoft ¥isual Basic xpress Edition =
= wind. Applicationl - Mi It ¥i: | Basic 2005 E: Editi @] x

File Edit Wiew Project Buld Debug Data Tools ‘Window Community Help

o - D | = o G= [= &= | & A

AEE-Hd % i R =2 S| bonom SEECE | e B
? Forml.vb [Design]}’Start Page} NS Solution Explorer

2 3 pEEE

g =1of x| E WindowsApplication1
= o [=d] My Project

gSl| Form1.vb
.:ji‘Squtlon Explorer _jData SOUrCEs
)

Forml.¥b File Properties

B2 |2V

Build Action Campile
Zopy bo Qutput | Do nok copy
Custom Tool

Custorn Tool Man

Filz: Narme Farml vb

Build Action
Howe the file relates ko the build and
deployment processes.

Reeady

You are currently looking at the design screen of your VB program. Let’s go through
what you are seeing piece-by-piece.

http://msdn.microsoft.com/vstudio/express/downloads/

In the upper right-hand corner is the window for the Solution Explorer. Below the
words Solution Explorer are five buttons. The first is for the Properties window which is below
the Solution Explorer. The second is Show All Files, which allows you to see all of the files that
VB is using to create your application. The third is a Refresh button. The fourth button allows
you to View Code so you can tell your program what to do. The fifth button is View Designer,
which will return you to this screen and allow you to add new features to your program.

In the Solution Explorer window, you can right-click on any of the objects to modify
them. For instance, you can add additional Forms by right-clicking on the project name and
clicking Add ->Windows Form. I’ll let you explore those other options on your own.

Select Form1l in the Solution Explorer or click on the Form in the design window and
direct your attention to the Properties Window. Here you will see all of the options available to
you for how you can modify this program. There are a lot of options available, but I want you to
pay attention to a few. First, you can re-name your program. Whatever name is displayed here
is not what the user will see when they run the program. In order to change the name on the
form itself, go down to the Text property and change the name to whatever you desire. Notice
that you also have the option to add background colors and images, and you can modify the
icons, fonts, etc.

Direct you attention to the Toolbox located at the left side of the screen. Moving the
mouse over the Toolbox will expand a menu with collapsible sections. | recommend that you
expand the section for Common Controls and leave the others collapsed.

The Toolbox contains all of the items which you will be able to place onto your program.
These are the objects which the user will be able to see and interact with. You are probably
familiar with many of them already and may not realize it. Now you’ll get to see how the things
which you use so much actually work. Let’s go through some of the common controls to make
sure we understand what they are. If something does not look familiar to you, click on it, then
move the mouse over the form, and click again. This will deposit one of these items onto your
program So you can use it.

Button: causes an event to occur when the uses clicks on the button

CheckBox: allows the uses to select or de-select the option

CheckedListBox: allows the user to select or clear a variety of choices

ComboBox: contains a drop-down list for the user to select an item from

Label: displays text that is typically non-interactive

LinkLabel: a label with an internet hyperlink

ListBox: displays a list of items from which the user can make a selection

MaskedTextBox: a text box in which data of only one type can be entered

ProgressBar: displays a bar that fills to indicate progress on an operation

RadioButtion: allows the user to select only a single choice out of several choices

You’ll notice that if you place one of these items on your form, the Properties Window
changes. This window will now reflect all available properties of the object you have selected,
not the Form itself. If you want to place a Label on the program, then select if from the Toolbox,
click on the Form, and then look at the Properties Window. Notice that the default name of the
Label is Labell. VB will always name object by type and number by default. You can change
the name of this label if you want. Notice that changing the name does not change what is
displayed. The name of the object will be important when modifying its properties in the code.
If you want to change the text, go to Text on the Properties Window and change the text. Notice
that if you delete all of the text from a label, it will be very difficult to find. It is better to type in
some text initially, but set the property Visible to false if you don’t want the user to see it when
the program loads. These properties can also be modified in the code. For instance, if an event

occurs (the user clicks a button, checks a box, etc.), you might want some of these properties to
change.

Let’s try to write a basic program in VB. We want this program to display a line of text
that tells the user to double click on the text in order to see a sunset. On the properties window,
name the form Sunset. From the Toolbox, select Label and then click on the Form. A label
should appear with the name Labell. On the properties of this label, go to Text, and change the
text to “Double-click here to see a sunset”. Once you move the mouse off of that line of the
properties window, you’ll notice that the text on the form has changed. Reposition the text so it
is in the center of the Form. Now import a Picture-box from the toolbox and size it so that it
takes up most of the Form. In the properties, go to Image, and click the button with the ellipses
(...). You should now have a window prompting you to select a resource. Select Local
Resource, Import, and select the file Sunset from C:\ Documents and Settings\ All Users \
Shared Documents \ Shared Pictures \ Sample Pictures. Once you have selected the file Sunset,
click open, and the picture-box should now display the picture of the sunset. Also, add a Button
and change the text on it to “Close”.

Think about what this program is supposed to do. We want the user to double-click on
the text in order to see the sunset. That means that the sunset must be invisible when the form
loads. So go to the properties of the picture box, and go to the property Visible, and change it to
False. The visibility of the Label should be set to True, since the user needs to see the text in
order to click on it.

At this point, we’ve visually designed the program, but we haven’t written any code to
tell the computer what to do. The main event of this program will occur if the user double-clicks
on the label, so this is where we must focus our attention. Double-click on the label, and VB will
begin generating a sub-routine for you. Below is the completed code for this program.

File Edit Wiew Project Buld Debug Data Tools window Community Help || Full Screen
sunset.yb* r Sunset, vb [Design]*] -
“t4 Sunset j IJ:’;‘l(Declaratiuns)
FPublic Class Sunset

X

]

[*]

Private Sub Lebell Click(ByWVal sender Ais Systew.Chject, ByVal e As Systemw.Eventirgs) Handles Labell.DoubleClick
Labhell.¥isible = False
PictureBoxl.Visible = True

End Zub

Private Jub Buttonl Click(ByVal sender A= Jystewm.Chject, ByWal e Ls Systew.Eventlrgs) Handles Buctonl.Click
Me.Close ()
End Zub
End Class

Ready Lnz Cal 1 chi b (5

Notice that the code begins with Public Class Sunset. It is public in the way that the
global variables were public. Other programs could conceivably call this program if | added this
functionality to it. The term class means a logical grouping of procedures and data that simplify
program organization. It is called Sunset because we changed the name of this form to Sunset.
The drop-down menu on the left will list for us all of the objects contained in this class. The
menu on the right will list all actions that can be performed on or by those objects.

The next line of code says:

Private Sub Labell Click(Byval sender As System.Object, ByvVal e As
System.EventArgs) Handles Labell.Click

This tells us that this is a Private (as opposed to Public) sub-routine (or sub-procedure)
that will treat events (of type Click) on the object Labell. Specifically, this sub-routine will tell
the computer what to do if the user clicks once on the label.

We said we wanted the user to double-click on the text. Change Labell.Click into
Labell.DoubleClick. Notice that this can be done several ways. You can manually type it in; or
you can also select the event Double-click from the drop-down menu.

We need this sub-procedure to hide the text in the label and make the picture appear. We
do this by altering the properties of these objects. The properties of an object can be accessed by
typing in its name followed by a period. When you hit the period, a drop-down menu will appear
listing all of the properties of that object. Type in the following:

Labell.Visible = False
Picturebox1.Visible = True

Now the sub-routine will tell the program that a double-click on the text will cause the
text to become invisible and make the picture appear.

Also, the button “Close” that we created needs to close the program when it is clicked.
Go back to the Designer view, double-click on the button “Close”, and the code for a sub-
procedure will appear beneath the sub-procedure for the Labell.

If some code needs to access a property of the program, it can do so through the use of
Me. Type in the following:

Me.close

Now that we’ve created the code for our program, let’s test it. Before compiling the
program into an executable file that can be distributed, you always want to Debug the program
first. In order to do this, click the Debug menu, and then click Start Debugging. VB will now
create a temporary compilation of your program so you can test the code out. You can check
that the program works by double-clicking on the text, verify that the text disappears and the
picture appears, and then hit the close button.

Once you have checked the program and cleared out any bugs, you can create an
executable (.exe) file that you can use on any Windows operating system. This can be done
through the Build menu at the top of the screen. Before we do that, let’s add a little more
functionality to this program.

Right now, the only way to make the picture appear is to double-click on the text.
Normally, operations in Windows programs do not involve clicking on text. Also, we have not
made a way to remove the picture once it has appeared. You normally use buttons, check-boxes,
radio-buttons, etc. Let’s add that functionality to the program.

Go back to the design view and expand the size of the form to make room for additional
objects. Since we already have a text line that accomplishes something, let’s leave it in the
program, but create another Label from the Toolbox, and add a Checkbox, two Radio Buttons,
and two Buttons. Arrange it so your form looks something like this:

B sunset - Microsoft Yisual Basic 2005 Express Edition ===l
File Edit Wiew Project Build Debug Data Format Tools Window Community Help
FEE-d | 2R(R([E2)9-C-|r 18 EEFERFER D

?)’ Sunsetz.vb /Sunset2.vb [Design] | Start Page | PR el Sclution Explorer

g 2EIEBE

E S [=IE G Sunsetz

..... =] My Project

Double-click here to see the sunset .. [E]5unsetz.vb

Double-click here to hide the sunset

Wiew Sunzet | Hide Sunzet I

™ Wiew Sunset

= View Sunset € Hide Sunset

Cloze |

Sunset System.Windows, Forms =

=B

Opacity 100% -
Padding 0,0,0,0

RightToleft Mo

RightToLeftLa False

ShowIcon True

ShowInTaskbe True

Size 501, 253
SizeGripStyle Auto
StartPosition | ‘WindowsDef aul
Tag J
Text Sunset
TopMost False -

Text

The kext associsted with the
contral,

Itemis) Saved

Change the text of the objects appropriately so it looks similar to what you see here.
Now we need to add some functionality to this program. Let’s think about what we want each of
these objects to do.

The new Label, the Hide Sunset Button, and the Hide Sunset RadioButton need to make
the picture disappear. So all of them will have the code:

PictureBox1.Visible = False

The Label you just added needs to make the picture disappear when the user double-
clicks on it. But should this Label even be visible when the picture is not displayed? If we don’t
want the user having this option, we might want to make Label2 invisible at the start of the
program. The same can be said of the Hide Sunset button. Go back to the designer view and
change the Visible property to false for both of these. Also, the RadioButtons need to reflect the
status of the program when it loads. When you begin the program, the picture is not visible; so
why should the RadioButton labeled View Sunset be checked? Click on the RadioButton labeled
Hide Sunset and change the Property Checked to true (or you could click on the RadioButton

labeled View sunset and change the Property Checked to false). Remember, any properties that
you want loaded when the program starts should be set in the Designer View.

Now we need to make sure that all of these objects do everything that they are supposed
to. Let’s consider Labell, the label we originally worked with. When this label is double-
clicked, it needs to disappear, make the picture appear, and also make Label2 appear. Also, it
needs to make the appropriate changes to the other objects. Here’s what the code might look
like:

Private Sub Labell Click(ByVal sender As System.Object, Byval e As
System.EventArgs) Handles Labell.DoubleClick

Labell.Visible = False

Label2_Visible = True

Button2.Visible = False

Button3.Visible = True

RadioButtonl.Checked = True

CheckBox1.Checked = True

PictureBoxl.Visible = True
End Sub

Homework 1: Make the appropriate changes to the rest of the program. Make sure that
each object interacts appropriately with the rest. You might want to make use of an If...Then
statement for the checkbox and the RadioButtons.

Extra Credit: Good computer programmers always strive to make their programs as
efficient as possible. One way to measure this is to look at how many lines of code you have.
See if you can write this program in fewer than 50 lines of code and still have it retain all of its
functionality. You can check how many lines of code you have by clicking on the last line of
code and looking at the line number at the bottom of the screen.

